Metazoan opsin evolution reveals a simple route to animal vision.

نویسندگان

  • Roberto Feuda
  • Sinead C Hamilton
  • James O McInerney
  • Davide Pisani
چکیده

All known visual pigments in Neuralia (Cnidaria, Ctenophora, and Bilateria) are composed of an opsin (a seven-transmembrane G protein-coupled receptor), and a light-sensitive chromophore, generally retinal. Accordingly, opsins play a key role in vision. There is no agreement on the relationships of the neuralian opsin subfamilies, and clarifying their phylogeny is key to elucidating the origin of this protein family and of vision. We used improved methods and data to resolve the opsin phylogeny and explain the evolution of animal vision. We found that the Placozoa have opsins, and that the opsins share a common ancestor with the melatonin receptors. Further to this, we found that all known neuralian opsins can be classified into the same three subfamilies into which the bilaterian opsins are classified: the ciliary (C), rhabdomeric (R), and go-coupled plus retinochrome, retinal G protein-coupled receptor (Go/RGR) opsins. Our results entail a simple scenario of opsin evolution. The first opsin originated from the duplication of the common ancestor of the melatonin and opsin genes in a eumetazoan (Placozoa plus Neuralia) ancestor, and an inference of its amino acid sequence suggests that this protein might not have been light-sensitive. Two more gene duplications in the ancestral neuralian lineage resulted in the origin of the R, C, and Go/RGR opsins. Accordingly, the first animal with at least a C, an R, and a Go/RGR opsin was a neuralian progenitor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Origins of Novel Protein Interactions during Animal Opsin Evolution

BACKGROUND Biologists are gaining an increased understanding of the genetic bases of phenotypic change during evolution. Nevertheless, the origins of phenotypes mediated by novel protein-protein interactions remain largely undocumented. METHODOLOGY/PRINCIPLE FINDINGS Here we analyze the evolution of opsin visual pigment proteins from the genomes of early branching animals, including a new cla...

متن کامل

Analysis of the Opsin Repertoire in the Tardigrade Hypsibius dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda

Screening of a deeply sequenced transcriptome using Illumina sequencing as well as the genome of the tardigrade Hypsibius dujardini revealed a set of five opsin genes. To clarify the phylogenetic position of these genes and to elucidate the evolutionary history of opsins in Panarthropoda (Onychophora + Tardigrada + Arthropoda), we reconstructed the phylogeny of broadly sampled metazoan opsin ge...

متن کامل

Characterization of the long-wavelength opsin from Mecoptera and Siphonaptera: does a flea see?

Mecoptera and Siphonaptera represent two insect orders that have largely been overlooked in the study of insect vision. Recent phylogenetic evidence demonstrates that Mecoptera (scorpionflies) is paraphyletic, with the order Siphonaptera (fleas) nesting as sister to the family Boreidae (snow fleas), showing an evolutionary trend towards reduction in gross eye morphology within fleas. We provide...

متن کامل

The Comb Jelly Opsins and the Origins of Animal Phototransduction

Opsins mediate light detection in most animals, and understanding their evolution is key to clarify the origin of vision. Despite the public availability of a substantial collection of well-characterized opsins, early opsin evolution has yet to be fully understood, in large part because of the high level of divergence observed among opsins belonging to different subfamilies. As a result, differ...

متن کامل

Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 46  شماره 

صفحات  -

تاریخ انتشار 2012